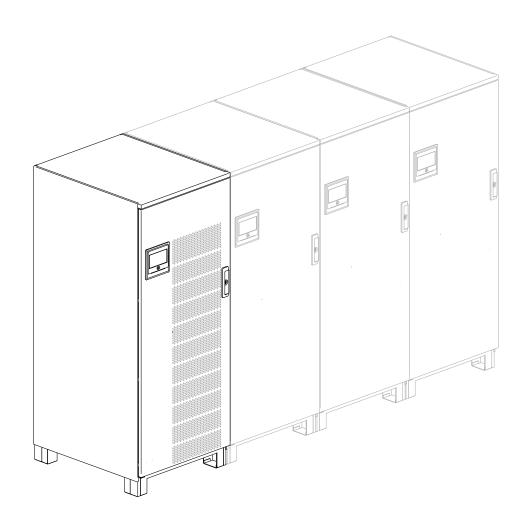


MODULYS XM

50 to 500kW Modular Unit for parallel architecture up to 2,0 MW



OBJECTIVES

The purpose of these specifications is to provide the information required to prepare the system and installation site. The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

For detailed information, see the installation and operating manual.

1. ARCHITECTURE

1.1 RANGE AND FLEXIBILITY

Modulys XM is a modular, scalable, and redundant UPS system based on plug-in, hot-swap power modules.

Its modular design enables power scalability by simply adding one or more additional modules to the existing unit (up to six modules per unit).

This modularity also allows for redundancy, an essential feature to ensure the fault tolerance of the UPS system. Redundant configurations of the power modules can be set, ranging from N+1 to N+R.

Modulys XM Units can be connected in parallel (up to 4) to increase overall power capacity to meet higher power requirements and increase the flexibility of the system.

Modulys XM is highly flexible, and this flexibility is further leveraged in its parallel architecture, providing exceptional versatility that encompasses all aspects of parallel architectures, configurations and design.

1.1.1 THE BRICKS

Modulys XM is built on a flexible brick concept. The UPS can be built by associating the bricks according to the requirements.

UNIT		
Max Unit Power (kW)	500	
Parallelability	Ready for parallel up to 4	
Height (mm)	1990	
Width (mm)	800	
Depth (mm)	950	
Weight (without modules)	400	
Cabling	Тор	
Access for installation/cabling, operation and maintenability	Front access, for all the parts composing the Unit: rear and lateral access are never necessary	
Grounding system	Flexibility to work on any grounding system: TN-C - TN-S - IT - TT	
Maintenability	Fast and safe maintenance based on parts (like power modules, static bypass, electronic boards, mimic panel) that can be all hotswapped in inverter mode (double conversion mode) without the need of moving in maintenance bypass or static bypass	
	Electronic-free cabinet: all the electronics parts are plug-in (not fixed to the Unit enclosure) and can be hot-swapped	
Number of Power Modules	2 → 10	
Power Module Size (kW)	50	
Number of Static Bypass Modules	1	
Bypass Module Size (kW)	500	

POWER MODULES			
Power (kW)	50		
Architecture and	Double conversion		
reliability	Completely independent: Rectifier, Inverter, Battery Charger, Internal Control, Control for internal Parallel		
	Segregation at input and output stages for complete isolation of electronic: embedded upstream and downstream galvanic separation and fast fuses		
	Selective disconnection: any potential fault is isolated inside the affected power module, without affecting the remaining modules		
	Heavy duty connectors > 500 mating cycles (certified)		
	MTBF > 1.000.000 h (certified)		
Hot-swap and Module addition for scalability	Hot swap and hot plg-in: safe (EN 62040-1 and EN 50110-1) and completely automatic (certified)		
	Automatic power module self-configuration and testing (certified)		
	Automatic firmware alignment without any intervention of the operator (certified)		
	MTTR < 2 min		
Parallelability	Totally independent power modules with distributed parallel control (no single point of failure: no centralised control)		
Weight (kg)	36		
Cabling	Plug-in		

OPTIONS / EXTENSIONS	
N-PE connection kit for TN-C gounding system	Ready for on-site installation
Input / Auxiliary mains connection kit for common mains	Ready for on-site installation
Remote mimic panel	Ready for on-site installation
Programmable relay card 3 inputs / 4 outputs + insulated RS485 serial link	Ready for on-site installation
Net vision card web/SNMP interface and bacnet	Ready for on-site installation
Environment temperature and humidity sensor and 2 inputs	Ready for on-site installation
External Battery temperature sensor	Ready for on-site installation
Cold-start kit	Ready for on-site installation
Automatic cross-synchronisation card	Ready for on-site installation (*)
Seismic kit	(*)

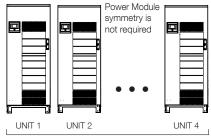
(*) consult us

1.1.2 FLEXIBLE RATED POWER

MAXIMUM POWER OF THE PARALLEL SYSTEMS				
Number of Units	1	2	3	4
Configuration w/o redundancy (kW) (1)	500	1000	1500	2000
N+1 redundant power module configuration (kW) (2)	450+50	950+50	1450+50	1950+50
1 redundant Unit configuration (kW)	/	500+500	1000+500	1500+500
1+1 configuration (kW)	/	500+500	/	/
Stand-alone configuration (kW) (3)	500 450+50 ⁽⁴⁾	/	/	/

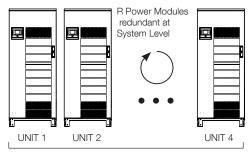
⁽¹⁾ configuring the system without redundancy is not advisable in a high-reliability modular setup, unless the redundancy is at the infrastructure level (2N, 3N2, Catcher, etc.).

- (2) power module redundancy can generally be configured as N+R
- (3) stand-alone configuration is possible, enabling operation with a single unit while retaining the flexibility to add additional units in the future.
- (4) it is recommended that the standalone configuration includes internal redundancy


1.1.3 FLEXIBLE ARCHITECTURE

Flexible Distribution of Power Modules:

- Symmetry across units is not required.
- Units may contain different numbers of power modules.
- Units are not required to have the same power capacity


Flexible Scalability:

- A power module can be added to any available slot in the system, regardless of which unit it is in.
- There is no requirement to add one power module to each unit to maintain the same power capacity; symmetry is not necessary

SYSTEM

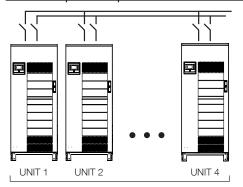
Flexible Redundancy management

SYSTEM WITH DISTRIBUTED POWER MODULE REDUNDANCY

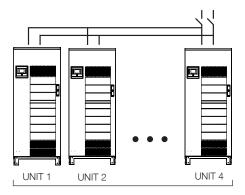
Power Module redundancy:

"R" virtual redundant modules (R=1, 2, 3, ...) are distributed across the entire system, eliminating the need for identical power module redundancy in each individual unit.

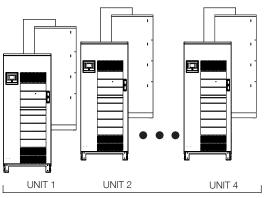
SYSTEM WITH DISTRBUTED UNIT REDUNDANCY


Unit redundancy:

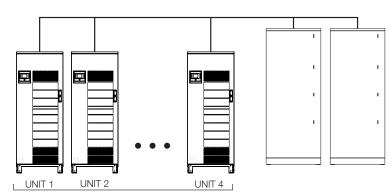
A single virtual redundant unit is designated across the system, with all redundant modules virtually allocated to this unit, though they remain physically distributed across the entire system.


Distributed redundancy across the global system allows for the avoidance of unnecessary duplication of system components, resulting in a cost-effective architecture, redundancy, scalability and maintenance.

Flexible upstream protection architecture



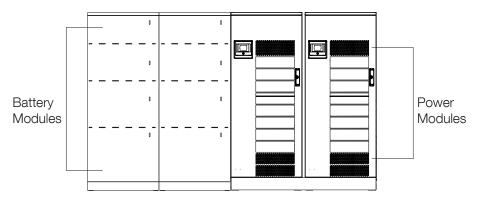
SYSTEM WITH DISTRIBUTED UPSTREAM ARCHITECTURE



SYSTEM WITH COMMON UPSTREAM ARCHITECTURE

Flexible battery architecture

SYSTEM WITH DISTRIBUTED BATTERY


SYSTEM WITH SHARED BATTERY

1.1.4 FLEXIBLE GROUNDING COMPATIBILITY

Compatible with any grounding system: TN-S, TN-C, IT and TT.

1.2 FLEXIBLE BACK-UP TIME

1.2.1 MODULAR BATTERY CABINET - HIGH CAPACITY

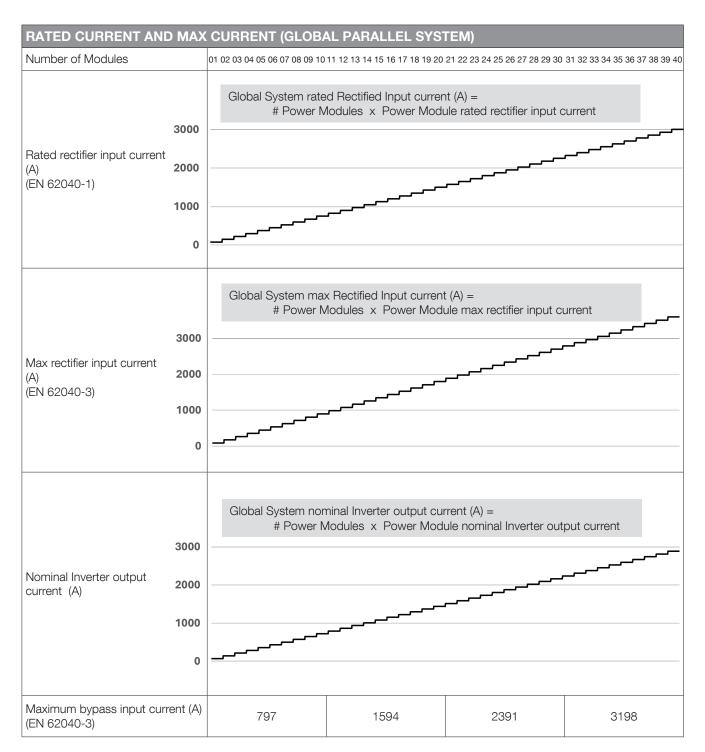
DIMENSIONS AND WEIGHT		
Number of Strings 0 1		1
Height (mm)	1990	
Depth (mm)	890	
Width (mm)	810	
Weight (kg)	220 1792	

High-capacity modular battery cabinets are designed for long back-up times (BUT) with higher power.

A standard temperature sensor optimizes the battery recharging parameters according to the ambient operating temperature to extend battery life.

1.2.2 MODULAR LITHIUM BATTERY CABINET

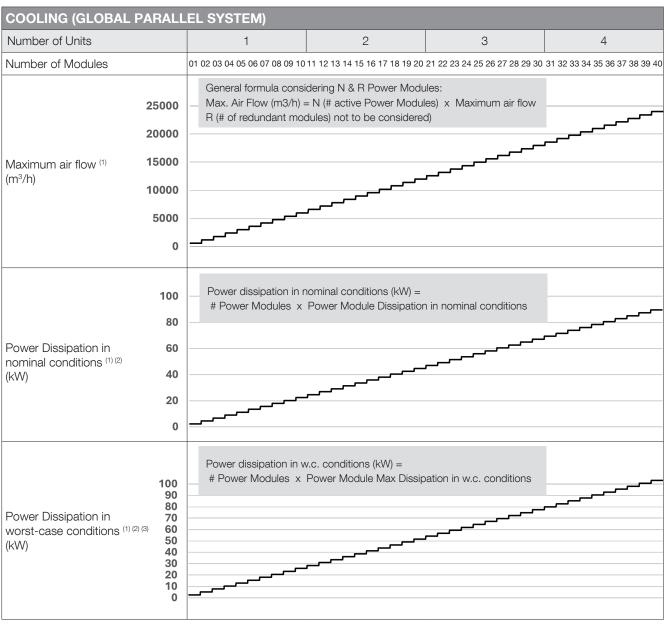
Consult us.


2. SPECIFICATIONS

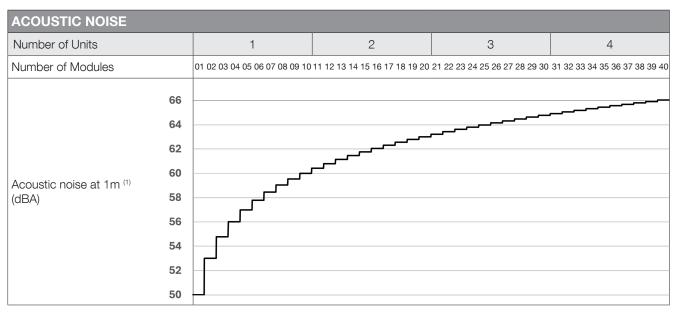
2.1 INSTALLATION PARAMETERS

GLOBAL PARALLEL SYSYEM DIMENSIONS AND WEIGHT					
Number of Units		1	2	3	4
Width (mm)		800	1600	2400	3200
Height (mm)			19	90	
Depth (mm)		890			
Number of Modules		01 02 03 04 05 06 07 08 09 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40
Weight (kg)	3000 2500 2000 1500 1000 500	Global System Weight = # Units x Empty Unit Weight + # Power Modules x Module Weight			
Single Empty Unit weight (kg)		400			
Single Power Module weight (kg) 36					

RATED CURRENT AND MAX CURRENT (SINGLE POWER MODULE)		
Rated rectifier input current (EN 62040-1) (A)	75	
Max rectifier input current (EN 62040-3) (A)	90	
Nominal Inverter output current (A)	72	
Max battery current (A)	114	



COOLING (SINGLE POWER MODULE)		
Maximum air flow	(m3/h)	600
	(VV)	2240
Power Dissipation under nominal conditions (1)	(kcal/h)	1920
	(BTU/h)	7640
	(VV)	2580
Power Dissipation (maximum) under worst-case conditions (2)	(kcal/h)	2220
	(BTU/h)	8810


⁽¹⁾ worst-case: R (# redundant modules) = 0

⁽²⁾ nominal input voltage and rated output active power (PF=1)

- (1) worst-case: R (# redundant modules) = 0
- (2) nominal input voltage and rated output active power (PF=1)
- (3) low input voltage, battery recharge and rated output active power (PF=1)

(1) at 70% nominal load.

2.2 ELECTRICAL CHARACTERISTICS

2.2.1 ELECTRICAL CHARACTERISTICS INDEPENDENT OF THE NUMBER OF MODULES AND UNITS

ELECTRICAL CHARACTERISTICS - INPUT	
Rated mains supply voltage (V)	400 V 3-phase+N
Voltage tolerance at full load	340 V to 480 V (+20 / -15%)
Voltage tolerance at derated load	up to 240 V @ 50% of nominal load (linear decrease)
Rated frequency (Hz)	40 - 70 Hz
Power factor	> 0.99 (1)
Total harmonic input current distortion (THDi)	≤ 3% (@: Pn, Resistive load, Mains THDv ≤ 1%)
Max inrush current at start-up	Power walk-in/Soft-start (selectable parameters)

(1) Pout \geq 50% of nominal Power.

ELECTRICAL CHARACTERISTICS - BYPASS	
Bypass rated voltage (V)	Nominal output voltage ±15% (±20% if GENSET is used)
Bypass rated frequency (Hz)	50/60
Bypass frequency tolerance	±2% selectable (±8% if GENSET is used)
Bypass frequency variation speed	50/60 ±10%

ELECTRICAL CHARACTERISTICS - INVERTER	
Rated output voltage (V)	(3ph + N) 400 380/400/415 selectable
Output voltage tolerance (V)	±1%
Rated output frequency (Hz)	50/60 (selectable)
Output frequency tolerance	±0.05% (on battery mode)
Load crest factor	≥ 2.7:1
Total output voltage distortion (THDv)	≤ 1% (Ph/Ph); ≤ 2% (Ph/N) (@: Pn, Resistive load)

ELECTRICAL CHARACTERISTICS - STORED ENERGY OPERATING MODE		
Number of battery blocks (VRLA) From 18+18 to 24+24 (1)		
(1) Consult us		

ELECTRICAL CHARACTERISTICS - EFFICIENCY			
Efficiency (on-line mode)	up to 96.5%		
Efficiency (eco-mode)	up to 99.3%		

ELECTRICAL CHARACTERISTICS - BYPASS OVERLOAD AND SHORTCIRCUIT PERFORMANCE					
Number of Units	1	2	3	4	
Number of Power Modules		2 → 10	11 → 20	21 → 30	31 → 40
	Nominal	725	1449	2174	2899
	Continuous	797	1594	2391	3188
Bypass overload (A)	10'	906	1812	2717	3623
	1'	1087	2174	3261	4348
1"		1268	2536	3804	5072
Bypass Max short-circuit current I _{TSM} (A _{pk}) (1) 20 ms		21000	34000	50000	67000
Bypass I ² t (A ² s) (1)		2200000	5600000	12700000	22600000

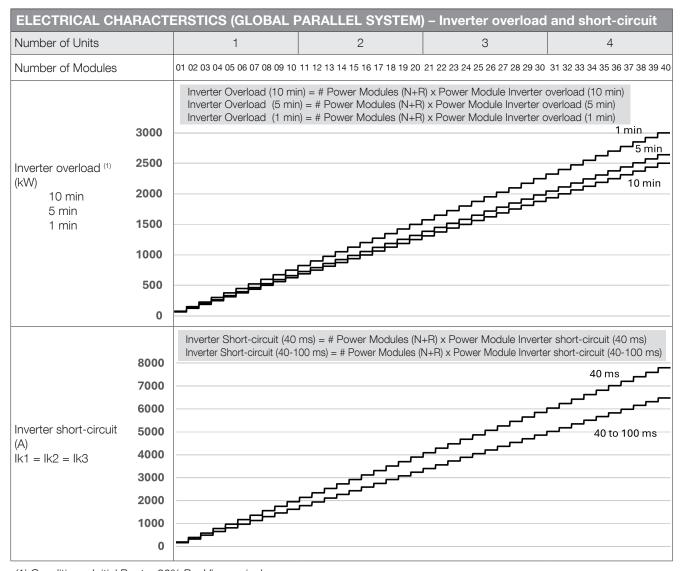
ELECTRICAL CHARACTERISTICS - SINGLE UNIT SHORT CIRCUIT SAFETY PERFORMANCE				
Number of Power Modules 1 → 10				
Conditional short circuit current Icc (A _{RMS}) (2) (3)	100 kA			
Chart aircuit augrent withstand law (A) (4)	High short-circuit (Standard Unit) (5) (7)	35 kA		
Short-circuit current withstand Icw (A _{RMS}) (4)	Extra-high short-circuit (Optional Unit) (6) (7)	65 kA		

⁽¹⁾ $Ta = 25^{\circ}C$

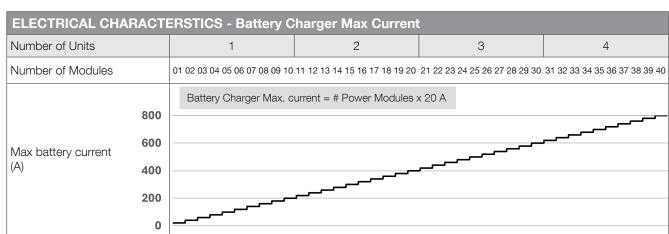
⁽²⁾ short-circuit safety withstanding Icw (IEC/EN 62040-1 requirement without upstream protection)

⁽³⁾ with Standard Unit (high short-circuit lcw = 35 kW) and each Unit with defined upstream protection (consult us)

⁽⁴⁾ short-circuit safety withstanding Icc (IEC/EN 62040-1 requirement with upstream protection)

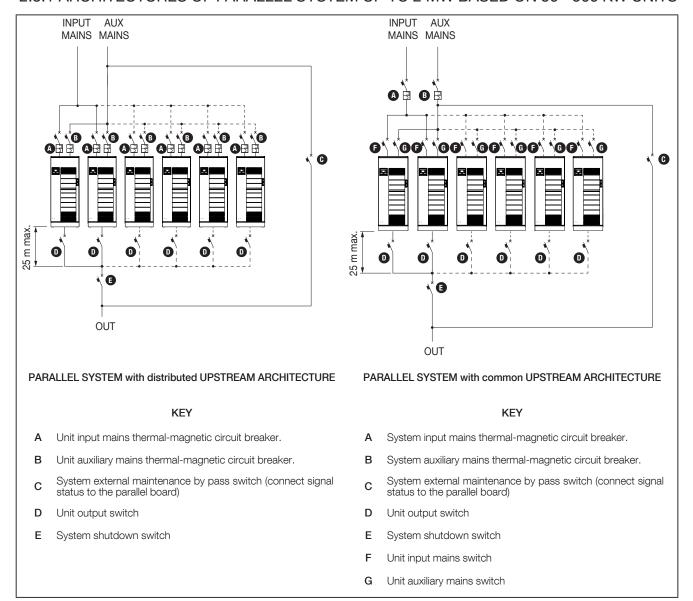

⁽⁵⁾ standard Unit Icw = 35 kA for enhanced short-circuit safety withstanding (above IEC/EN 62040-1 requirements: Icw = 17 kA)

⁽⁶⁾ extra rugged Unit Icw = 65 kA for enhanced short-circuit safety withstanding (above IEC/EN 62040-1 requirements: Icw = 17 kA)


⁽⁷⁾ third party certified

2.2.2 ELECTRICAL CHARACTERISTICS DEPENDENT ON THE NUMBER OF MODULES AND UNITS

ELECTRICAL CHARACTERSTICS (SINGLE POWER MODULE) – Inverter overload and short-circuit					
Inverter overload (1) (kW)	10 min	62.5			
	5 min	66			
	1 min	75			
Inverter short-circuit (A)	40 ms	195			
lk1 = lk2 = lk3	40 to 100 ms	162			


(1) Conditions: Initial Pout \leq 80% Pn, Vin nominal

2.3 RECOMMENDED PROTECTION

2.3.1 ARCHITECTURES OF PARALLEL SYSTEM UP TO 2 MW BASED ON 50→500 KW UNITS

The installation and system should comply with national plant regulations.

The electrical distribution panel should have a sectioning and protection system installed for input and auxiliary mains.

SINGLE UNIT CABLE - MAX SECTION					
D	Flexible	3 x 240			
Rectifier terminals (mm²)	Rigid	3 x 240			
Bypass terminals (mm²)	Flexible	3 x 240			
	Rigid	3 x 240			
Battery terminals (mm²)	Flexible	3 x 240			
	Rigid	3 x 240			
Output terminals (mm²)	Flexible	3 x 240			
	Rigid	3 x 240			

M10 terminals

Tightening torque 20 Nm

Maximum cross-section is determined by the size of the terminals.

As specified in EN 62040-3 Appendix 3 (Non-Linear Load Reference), in the event of three-phase non-linear loads connected downstream of the UPS, the neutral current on the load can be 1.5 - 2 times higher than the phase current. This should be taken into account when estimating the correct size of output and auxiliary neutral cables.

The Unit is designed for bottom connections. A specific option is available for top connection.

RECOMMENDED PROTECTION DEVICES - Input Mains						
Architecture (*		Distributed protections (1 rectifier protection for each Unit)	Common protections (1 rectifier protection for all the Units)			
Number of Units	Number of Units $1 \rightarrow 4$		1	2	3	4
Circuit breaker	Minimum	1000	upstream prot	ection system		e sizing of the the rated and
(A)	Maximum	1000	protection of c	onnection cabl	line parallel syst les based on th andards and reg	eir size (§ 2.3),

A circuit breaker switch with a magnetic intervention threshold of ≥10 ln is recommended.

When an optional external transformer is used, a circuit breaker with $Im \le 20 \times In$ (A) and selective breaker capabilities is necessary.

The minimum value depends on the size of the power cables in the installation, while the maximum value is constrained by the UPS cabinet.

The system can accommodate the maximum size of protection, regardless of the number of modules installed, to allow for future scalability.

A protection value lower than the maximum must be used when the mains network structure or cables cannot support the full power load. This value should be selected accordingly.

When the auxiliary mains and input are connected together, the general input protection rating must be higher than that of either the auxiliary mains or the rectifier.

RECOMMENDED PROTECTION DEVICES - Auxiliary mains						
Architecture		Distributed protections (1 rectifier protection for each Unit)	Common protections (1 rectifier protection for all the Units			r all the Units)
Number of Units		1 → 4	1	2	3	4
Circuit breaker (A) Minimum Maximum		800	For a common protection architecture, the sizing of the upstream protection system must consider the rated and maximum rectifier current of the parallel system (6.2.1) the			
		300	maximum rectifier current of the parallel system protection of connection cables based on their sand compliance with local standards and regulat		eir size (§ 2.3),	

A circuit breaker switch with a magnetic intervention threshold of ≥10 ln is recommended.

If an optional external transformer is used, a circuit breaker with $Im \le 20 \times In$ (A) and selective breaker capabilities is required.

The minimum value depends on the size of the power cables in the installation, while the maximum value is limited by the UPS cabinet.

The conditional short-circuit current (lcc) in compliance with IEC 62040-1 is 65 kArms (§ 2.2.1), provided that the UPS is protected by an MCCB with adequate breaking capability and current-limiting capacity under short-circuit conditions.

For detailed information, please contact us.

RECOMMENDED PROTECTION DEVICES - Upstream residual detection circuit breaker						
Architecture (1 re		Distributed protections (1 rectifier and aux. mains protection for each Unit)	Common protections (1 rectifier and aux. mains protection for the global parallel system)			or the global
Number of Units		1 → 4	1	2	3	4
Differential input (A)	Minimum	RCD devices cannot be used on parallel system with distributed protections		0,5	A ⁽¹⁾	

(1) RCD devices are not recommended as upstream common protection in a parallel system.

RCD devices are unnecessary when the UPS is installed in a TN-S system..

RCD devices are not permitted in TN-C systems.

TGP_MODULYS-XM_500F87_EN_V01 Non contractual document. © 2025, SOCOMEC SA. All rights reserved.

3. REFERENCE STANDARDS AND DIRECTIVES

3.1 OVERVIEW

REFERENCE	TITLE
2014/35/EU	Directive of the European Parliament and of the council of 26 February 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.
2014/30/EU	Directive of the European Parliament and of the council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.
2011/65/EU	Directive of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

3.2 STANDARDS

STANDARD	
Safety	EN/IEC 62040-1 - AS 62040-1
EMC	EN/IEC 62040-2 - AS 62040-2
Product certification	IECEE CB Scheme
Performance	EN/IEC 62040-3 - AS 62040-3
Product marks	CE - RCM ⁽¹⁾ - CMIM ⁽¹⁾ - UKCA ⁽¹⁾
Protective class	Protective Class I
Protection level	IP20

⁽¹⁾ depends on the production site. Consult the data plate on the equipment.

ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.

